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In this study, a predictive control system based on type Takagi-Sugeno fuzzy models
was developed for a polymerization process. Such processes typically have a highly
nonlinear dynamic behavior causing the performance of controllers based on conven-
tional internal models to be poor or to require considerable effort in controller tuning.
The copolymerization of methyl methacrylate with vinyl acetate was considered for
analysis of the performance of the proposed control system. A nonlinear mathematical
model which describes the reaction plant was used for data generation and implemen-
tation of the controller. The modeling using the fuzzy approach showed an excellent
capacity for output prediction as a function of dynamic data input. The performance of
the projected control system and dynamic matrix control for regulatory and servo
problems were compared and the obtained results showed that the control system
design is robust, of simple implementation and provides a better response than conven-
tional predictive control. VVC 2009 American Institute of Chemical Engineers AIChE J, 56:

965–978, 2010

Keywords: model predictive control, fuzzy dynamic modeling, model identification,
Takagi-Sugeno model, copolymerization

Introduction

A great diversity of products of high industrial interest
can be produced with polymerization processes. They gener-
ate materials with a broad field of application, including
plastics, rubber, furniture, inks, and drugs. However, the
dynamic behavior of such processes is quite complex, char-

acterized by strong nonlinearity and intense system variable

interactions. These factors make it very difficult to build a

sufficiently detailed deterministic model able to take into

account the main phenomena taking place in the system. The

difficulties are primarily related to the large number of dif-

ferential algebraic equations and the associated parameters

needed to represent the reactants, the intermediates, and the

product species. Additionally, for control and on-line optimi-

zation procedures, such models have to be solved in a rela-

tively short period of time.
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A possible way to deal with the problem is to develop
simplified models which may lead to restrictions in terms of
process representation, especially when high specifications
are required. The lack of accurate process representation is a
severe limitation in designing reliable and robust control sys-
tems. In fact, failure in the process representation directly
influences the success of the control strategies. Thus, a large
number of works have been developed focusing on suitable
process representation to be used as model for process con-
trol design. Basically, the most common approach is to use
the concept of model predictive controllers with a linear
model as an internal model. Furthermore, attention has been
directed to the applications of techniques of artificial intelli-
gence in the modeling of chemical processes, as for example
the use of artificial neural networks (ANN). This entails ei-
ther the use of ANN directly as a controller design tool or as
an internal model in predictive controllers, resulting in non-
linear controllers. Bearing this last approach in mind, an al-
ternative of great potential is the development and use of
fuzzy models, which may be applied in the design of the
control system as well as to model the process. Such models
have quite an interesting ability to represent the process with
different types of data, including operator information. This
modeling approach is suitable for polymerization plants
which have complex behavior, and are able to build models
dealing with concepts of uncertainty, including definitions of
probabilistic logic. Moreover, they allow the inclusion of in-
formation about the process in the generation of the mathe-
matical model, which makes it an alternative of great interest
from the operational point of view.

Alexandridis et al.1 introduced a systematic methodology
based on fuzzy systems to the problem of nonlinear system
identification. The new methodology resulted in both a lin-
guistic and an analytical model of the system. The method
was successfully tested in the identification of certain operat-
ing regions in a Continuous Stirred Tank Reactor (CSTR)
exhibiting various types of nonlinear behavior, such as limit
cycles and multiple steady states. Habbi et al.2 presented a
nonlinear dynamic fuzzy model for a natural circulation
drum-boiler-turbine. It was shown that the dynamic fuzzy
model results in appropriate and accurate global nonlinear
prediction and, at the same time, that their local models are
close approximations to the local linearizations of the non-
linear dynamic system. Cerrada et al.3 proposed an approach
for dynamical adaptive fuzzy modeling. The approach allows
the incorporation of the temporal behavior of the system var-
iables into the fuzzy membership functions. The illustrative
examples of system identification showed that the perform-
ance of the proposed fuzzy models based on the identifica-
tion error is adequate. These models followed the real output
even if there were sudden changes in the input variables.
This is an important characteristic of an adequate identifica-
tion model in real time applications. The approach is ori-
ented to applications needing an identification model such as
process control, supervision, fault diagnosis, etc., of nonlin-
ear and time-varying systems. As in Sala et al.,4 the current
research on new methods of modeling and control is based
on the application of fuzzy systems. It is important to high-
light that the use of the fuzzy logic as a modeling and con-
trol methodology may significantly simplify the way in
which algorithms for integration are executed. In fact, it is

quite attractive in terms of time, simplicity of implementa-
tion, relatively low cost and ability to rapidly model com-
plex systems.

Analyzing the aspects related to the process control more
specifically, it is worth emphasizing that many of the con-
ventional control algorithms may be inadequate in dealing
with very high specifications imposed in some industrial
processes, especially when a high quality product is required.
This may be the case of some polymerization processes in
which specific properties such as molecular weight distribu-
tion and mean molecular weight with impact on plastic proc-
essability have to be met. In such cases, a model based pre-
dictive controller, known as MPC (Model Predictive Con-
trol), which uses a dynamic model of the process as an
integral part of the control system, is a suitable approach.
According to Campello et al.,5 the great acceptance of MPC
algorithms for chemical process control is due to their ability
to deal with restrictions involving input and output variables
in procedures, and the fact that they are relatively easy to
use. Schnelle and Rollins6 applied a model predictive control
tool on a prototype continuous polymerization (CP) process.
It was shown that MPC technology is a good alternative for
solving CP control problems (minimizing settling time after
transition, coping with multivariable interactions, and un-
usual process dynamics). Santos et al.7 implemented an on-
line nonlinear model predictive control algorithm to control
the liquid level and temperature in a CSTR pilot plant,
where an irreversible exothermic chemical reaction was
simulated experimentally by steam injection. Several sources
of model mismatch and unmeasured disturbances that affect
the quality of the model in representing the reactor dynamics
were identified. Despite such mismatches and disturbances, it
was observed that the closed loop system is able to track
set-point changes and reject disturbances quite well. Park
and Rhee8 applied an extended Kalman filter based nonlinear
MPC to property control of a semibatch MMA/MA (Methyl
MethAcrylate/MethAcrylate) copolymerization reactor. The
experimental results demonstrated the good performance of
the control strategy when compared with other previously
used techniques. Ramaswamy et al.9 used MPC to control a
nonlinear continuous stirred tank bioreactor in an unstable
steady state, which was the desired set point. The effect of
variations on the prediction horizon, an important MPC con-
troller tuning parameter, was studied.

Among MPC control techniques, the dynamic matrix con-
trol (DMC) strategy is the one with most industrial applica-
tions due to the simplicity of its design and implementation,
and its ability to work well with restrictions in the manipu-
lated variable. According to Dougherty and Cooper,10 MPC
has become the leading form of advanced multivariable con-
trol in the chemical process industry. In an alternative
approach, they introduced a multiple model adaptive control
strategy for multivariable DMC. The method combines the
output of multiple linear DMC controllers and does not
introduce additional computational complexity in relation to
non-adaptive DMC. Guiamba and Mulholland11 developed
and implemented an Adaptive Linear DMC (ALDMC) algo-
rithm in a two-input/two-output pump-tank system with an
integrating behavior in the form of an off-line step response
convolution model. ALDMC showed better performance
than the non-adaptive Linear DMC (LDMC) in the case of
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plant/model mismatch. Haeri and Beik12 considered an
extended approach to the nonlinear DMC algorithm, which
can handle constrained and MIMO (Multi-Input/Multi-Out-
put) systems under certain defined conditions. Simulation
results to illustrate the effectiveness of the method were pre-
sented for the control of a nonlinear model of a stirred tank
reactor with two inputs and two outputs and also for a power
unit nonlinear model with three inputs and three outputs.

Using the potential of predictive strategies coupled with
the ability to represent systems using fuzzy logic for design-
ing controllers is an interesting approach. Roubos et al.13

described work focusing on the use of Takagi-Sugeno fuzzy
models in combination with MPC algorithms. First, the
fuzzy model-identification of MIMO processes was given
and then the developed fuzzy model was used in combina-
tion with MPC. The studied methodology was tested and
evaluated with a simulated laboratory setup for a MIMO liq-
uid level process with two inputs and four outputs. Abonyi
et al.14 explained the identification and control of nonlinear
systems by means of Fuzzy Hammerstein (FH) models,
which consists of a static fuzzy model connected in series
with a linear dynamic model. The obtained FH model was
incorporated in a model-based predictive control scheme and
a new constraint-handling method was presented. A simu-
lated water-heater process was used as an illustrative exam-
ple. Simulation results showed that not only was good
dynamic modeling performance achieved, but also the
steady-state behavior of the system was well-captured by the
proposed FH model. Sousa and Kaymak15 investigated the
use of fuzzy decision making (FDM) in MPC, and compared
the results to those obtained from conventional MPC.
Experiments on a non-minimum phase, unstable linear sys-
tem, and on an air-conditioning system with nonlinear dy-
namics were analyzed. It was shown that the performance of
the model predictive controller can be improved by the use
of fuzzy criteria in a fuzzy decision making framework.
Mollov et al.16 proposed the synthesis of a predictive con-
troller for a nonlinear process based on a fuzzy model of the
Takagi-Sugeno type, resulting in a stable closed-loop control
system. The effectiveness of the approach was demonstrated
through a simulated example and in the real-time control of
a laboratory cascaded-tanks process. Sarimveis and Bafas17

introduced a predictive control technique based on a Takagi-
Sugeno dynamic fuzzy model, which was used for predicting
the future behavior of the output variable in a SISO (Single-
Input/Single-Output) control loop. The objective function of
the controller was solved on line using a genetic algorithm.
The proposed methodology was applied to a random process
in a non-isothermal CSTR and can be used with any type of
fuzzy model, being particularly useful when a direct fuzzy
controller cannot be designed due to the complexity of the
system. Mendonça et al.18 introduced a generalization of
fuzzy predictive filters to multivariable processes to solve
non-convex optimization problems resulting from the appli-
cation of model predictive control to nonlinear processes.
The proposed scheme was applied to the control of a gantry
crane. Simulation results showed the advantages of the
method. Karer et al.19 presented the Takagi-Sugeno fuzzy
formulation for a hybrid fuzzy modeling approach. A MPC
algorithm suitable for systems with discrete inputs was
examined and the results demonstrated the benefits of the

MPC algorithm using the proposed hybrid fuzzy model on a
batch-reactor simulation example. Causa et al.20 described
the design of a hybrid fuzzy predictive control based on a
genetic algorithm. The temperature of a batch reactor was
controlled by using two on/off input valves and a discrete-
position mixing valve. The proposed strategy proved to be a
suitable method for the control of hybrid systems, giving a
similar performance to that of typical hybrid predictive con-
trollers and significant savings in computation time. Sáez
et al.21 developed solution algorithms based on computa-
tional intelligence for solving the dynamic multi-vehicle
pick-up and presented a problem formulated under a hybrid
predictive adaptive control scheme. Promising results in
terms of computation time and accuracy were presented
through a simulated numerical example.

Therefore, this study proposes a Fuzzy Model based Pre-
dictive Control system (FMPC), in which the internal models
for the proposed system are developed using fuzzy logic,
taking into account process restrictions and nonlinearities.
The control strategy design is multivariable with four outputs
to control by manipulating four inputs. The copolymerization
of methyl methacrylate with vinyl acetate is considered as a
case study.

Fuzzy Systems Applied to the Modeling of
Complex Processes

Many engineering problems are characterized by having
very little information and are said to be complex. These
problems are imbued with a high degree of uncertainty. To
deal with this, in 1965, Lotfi Zadeh introduced his seminal
idea in a continuous-valued logic that he called fuzzy set
theory.22 Zadeh’s work had a profound influence on the
thinking about uncertainty because it challenged not only
probability theory as the sole representation for uncertainty,
but also the very foundations upon which probability theory
was based: classical binary (two-valued) logic.23

A fuzzy set contains elements that have varying degrees
of membership in the set. The elements of a fuzzy set,
because their membership need not be complete, can also be
members of other fuzzy sets in the same universe. All the in-
formation contained in a fuzzy set is described by its mem-
bership function. The algorithm developed in this study
incorporates Gaussian membership functions l(x) for the
inputs x,24,25 given by Eq. 1:

lðxiÞ ¼ exp � 1

2
� xi � ci

ri

� �2
" #

(1)

where xi is the ith input variable, ci is the ith center of the
membership function, and ri is a constant related to spread of
the ith membership function. Figure 1 illustrates a typical
Gaussian membership function and its parameters.

Fuzzy set operations

The operations of union, intersection, and complement are
the standard fuzzy operations. They are defined the same way
as for crisp sets, when the range of membership values is lim-
ited to the unit interval. For each of the three standard opera-
tions, there is a broad class of functions whose members can be
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considered fuzzy generalizations of the standard operations. In
such a case, fuzzy intersections are usually referred to as t-
norms and fuzzy unions are usually referred to as t-conorms (or
s-norms). These t-norms and t-conorms are so named because
they were first introduced as triangular norms and triangular
conorms, respectively, in study of statistical metric spaces.22

The more widely used t-norms and t-conorms, relating two
fuzzy sets X1 and X2, with elements x1 and x2, respectively, are
shown in Table 1. The probabilistic t-norm and t-conorm will
be applied in the calculation of the inferred output of the fuzzy
rule-base for the process considered in this study.24,25

Fuzzy modeling

The basis of the fuzzy model is a set of rules that represent
the knowledge of the process. To achieve this, the fuzzifica-
tion, inference, and defuzzification stages must be processed.

The process called fuzzification converts numeric inputs
into fuzzy sets so that they can be used by the fuzzy sys-
tem.26 This transformation is possible through the use of
membership functions.

The inference mechanism is carried out by an expression
of the following type:

IF premise ðantecedentÞ THEN conclusion ðconsequentÞ
(2)

This form is commonly referred to as the IF-THEN rule-
based form; it is generally referred to as the deductive form.
Each rule represents a cause and effect relationship. For a
given operating condition, there is a corresponding action.

Defuzzification is used to convert the fuzzy results into
crisp results. This procedure provides a means to choose a
crisp single-valued quantity (or a crisp set) based on the
implied fuzzy sets.

According to Lima et al.,24 fuzzy modeling is interesting in
that it enables the incorporation of qualitative information on
the process behavior during model building. Possible changes
in kinetic as well as heat and mass transfer parameters due to
alterations in operating conditions may also be incorporated in
the process model through the fuzzy approach.

Takagi-Sugeno Fuzzy Model

The Takagi-Sugeno fuzzy model is a special case among
functional fuzzy models. Its structure was proposed by
Takagi and Sugeno.27 In this approach, the fuzzy model sub-
stitutes the consequent fuzzy sets in a fuzzy rule by a linear
equation of the input variables. Thus, a fuzzy model can be
regarded as a collection of several linear models applied
locally in the fuzzy regions defined by the rule premises
where the overall model of the system is represented as the
interpolation of these linear models. Therefore, it has a con-
veniently dynamic structure so that well-established linear
systems theory can be easily applied to the theoretical analy-
sis and design of the overall closed-loop system.28

The Takagi-Sugeno model for generation of fuzzy rules
from a given input–output data set, which has two-inputs x1
and x2, and output y, can be written in the following way:

IF x1 is X1 and x2 is X2 THEN y is y ¼ f ðx1; x2Þ (3)

where X1 and X2 are fuzzy sets (membership functions) of x1
and x2, respectively, and y ¼ f(x1,x2) is a crisp consequent
function. The generalization of expression (3) for a linear
structure with an entrance number n leads to the Takagi-
Sugeno model as follows:

IFðxi is Xi;1Þ and ðx2 is Xi;2Þ and … and ðxj is Xi;jÞ
and … and ðxn is Xi;nÞ

THEN yi¼ai1 � x1 þ ai2 � x2 þ� � �þ aij � xj þ� � �þ ain � xnð4Þ
where i ¼ 1,…,R, being R the number of rules of the fuzzy
model; j ¼ 1,…,n; and aij are parameters of the consequent
function of the fuzzy model.

For a given input, the output of the fuzzy model is
inferred by the weighed average of referring output i to each
rule, calculated by:

y ¼
PR

i¼1 fi � liðxÞPR
i¼1 liðxÞ

(5)

where li(x) are membership functions and fi is a consequent
function to each rule i.

This is the basic objective in this study; to develop a
fuzzy model to be used in control system design.

Identification of Functional Fuzzy Models

To develop a FMPC controller using the concepts of fuzzy
logic and DMC predictive control, it is necessary initially to

Table 1. Main t-norms and t-conorms

Type Zadeh Probabilistic Lukasiewicz Weber

t-norm min
(x1,x2)

x1�x2 max
(x1þx2�1,0)

x1; if x2 ¼ 1

x2; if x1 ¼ 1

0; if not

8><
>:

t-conorm max
(x1,x2)

x1þx2�x1�x2 min (x1þx2,1)

x1; if x2 ¼ 0

x2; if x1 ¼ 0

1; if not

8><
>:

Figure 1. Typical Gaussian membership function.
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generate the functional fuzzy models. The fuzzy model will
be used as an internal model of the DMC predictive control-
ler in substitution of its respective convolution model (fore-
cast model), thus modifying the basic structure of the DMC
and generating a FMPC controller. An interesting character-
istic of the proposed controller is its ability to deal with non-
linearities. This is due to the fact that the developed fuzzy
models start to represent the process in a linear way for each
one of the operational regions, however, since overlapping
between the membership functions is possible, the combina-
tion of the models can generate nonlinear representations of
the system.

Steps for the development of functional fuzzy models

Important decisions must be taken in the initial phases of
the modeling procedure which will directly influence the
quality of the obtained model.24,25

First, the fuzzy model structure that composes the rule
base of the system must be defined. The variables that will
be used and the interconnection amongst them must be
selected. The number and types of the chosen variables must
be in accordance with the requirements of the problem.
These models will possess a dynamic configuration in such a
way as to represent the behavior of the process throughout a
time horizon. A close look at the fuzzy model structure and
the way in which it is built reveals its recursive properties.

To predict an output at time k, fuzzy models usually use
not only inputs from time k but also inputs and output from
time points previous to k (that is: k�1, k�2,…,k�P). The
number of past time points to be used (i.e., P) is an impor-
tant parameter for optimization because it has considerable
influence on the final quality of the model.

The next stage is the data generation for the identification
of the model. At this point, the maximum and minimum lim-
its of variation of the variable must be defined so that the
model operation range is determined. First, the training data
are generated and are then applied to attain the parameters
of the model. This model is validated later through the use
of test data. The data generation is carried out through a ran-
dom excitation of the input variables of the process. An
input variable is changed instantly and, at the same time, the
behavior of the output variables is collected. Then, the same
procedure is performed for the other input variables and
finally a data set for the training of the fuzzy model and a
data set for its validation are obtained. It must be observed
that the data generation of the training and test sets is done
in different conditions of frequency and amplitude of excita-
tion of the entrance variables.

Another important point to consider in dynamic fuzzy
model development is the determination of the sampling
rate. The time constant of the process has to be taken into
account. Alternatively, when the model is used for control,
as in this study, the sampling rate must be related with the
controller action interval.

Generation of functional fuzzy models

As already described, the functional fuzzy models devel-
oped in this study will be of the Takagi-Sugeno type with
the structure defined by Eq. 4.

The initial stage for the construction of these models is to
complete the data identification process. A process represen-
tative data set including possible qualitative information
should be made available and the next steps include the
stages of fuzzification (membership functions), inference
(through the use of t-norms and t-conorms), and calculation
of the inferred numerical output by the weighed average of
referring numerical outputs to each rule.

However, the dimension of the model is not known ini-
tially: the number of rules, the number and parameter values
of the membership functions associated to each variable
(centers and spread constant, since Gaussian membership
functions will be used), and the parameters of the consequent
functions of the rules. To obtain a minimum realization
(model dimension) of the process the following methods can
be used.
• Subtractive clustering method: which determines the

number of rules and the parameters of the membership func-
tions.
• Gradient Method: the quality of the fuzzy model can be

improved by modifications in the entrance parameters. The
gradient method acts by adjusting the entrance data, and thus
improving model quality.
• Learning From Example (LFE): it only constructs the

rules. The complete specification of the membership func-
tions is left to the analyst.
• Least square algorithm: which requires the number of

rules and the membership functions of the premises. It is
used to calculate the parameters of the consequent functions.
• Modified Learning From Example (MLFE): in contrast

with LFE, MLFE calculates the rules and the parameters of
the membership functions.

As presented above, each of the methods is used for a spe-
cific objective. Thus, they can be combined for a specific
need. For the system analyzed in this article, the functional
fuzzy models will be generated through the combination of
the subtractive clustering method with the least square algo-
rithm. Details on subtractive clustering and least square
methods are given by Chiu29,30 and Passino and Yurko-
vich,26 respectively.

Validation of functional fuzzy models

In this study, the results of the model validation are illus-
trated through figures and quantified through the average
quadratic error, given by Eq. 6:

Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1ðyk � ykÞ2
m

s
(6)

where k is the time point, m is the number of considered
discrete instants, yk is the predicted output by the fuzzy model
in instant k, and yk is the output of the process in instant k
(phenomenological model).

Multivariable DMC

DMC was developed at Shell Oil Company in 1979. The
basic idea is to use time-domain step-response models
(called convolution models) of the process to calculate the
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future changes in the manipulated variables that will mini-
mize some performance index. In the DMC approach, it is
desirable to have PH (prediction horizon) future outputs
responses matching some ‘‘optimum’’ trajectory by finding
the ‘‘best’’ values of CH (control horizon) future changes in
the manipulated variables. This is exactly the concept of a
least square problem of fitting PH data points with an equa-
tion with CH coefficients. This is a valid least square prob-
lem as long as PH is greater than CH.

The aim of a predictive control law is to drive future out-
puts close to the reference trajectories. The computation
sequence calculates the reference trajectories and then esti-
mates the outputs using the convolution models. Then, the
errors between predicted and reference trajectories are calcu-
lated.31 The next step is to estimate the sequence of the
future controls by minimizing an appropriate quadratic
objective function J for each output. However, only the first
element is implemented. At this point, the data vectors are
shifted so that the calculations can be repeated at the next
sample instant. This function J is defined by Eq. 7:

J ¼
XPH
i¼1

ðydi � ypredCL;iÞ2 þ f 2 �
XCH
k¼1

½ðDukÞfuture�2 (7)

where i and k are the time points; y is the output variable
(controlled); u is the input variable (manipulated), with Duk ¼
uk � uk�1; and f is the suppression factor for the movements of
the manipulated variable.

In the original DMC strategy, the term ydi is the setpoint.
In the present study, to prevent drastic control actions, a
term is introduced based on the Model Algorithmic Control
(MAC) strategy.32 The desired output is calculated through
an optimal trajectory defined by a first-order filter:

ydi ¼ a � yactuali�1 þ ð1� aÞ � yseti�1 (8)

where yactuali�1 is the vector of current measured values of the
controlled variable at sampling time i�1; yseti�1 is the vector of
setpoints of the controlled variable at sampling time i�1; and
a is the reference trajectory parameter that must be precisely
adjusted by optimization of the objective function J, with 0 �
a � 1.

Predicted values ypredCL;i in Eq. 7 can be obtained directly
from a model of the process. However, when this model is
not perfect (and this is generally the case), the controller
will not be sufficiently robust. Therefore, the following

incremental model is applied to remove modeling inaccura-
cies:

ypredCL;i ¼ yCL;i þ yactuali�1 � yCL;i�1

� �
(9)

where yCL,i is defined by convolution model. In Eq. 9, it is
considered that the difference between the predicted and actual
values in the previous instant is valid for the current instant.
Thus, the system reaches the desired value for successive
corrections of the shunting line. Details on DMC and on
obtaining the convolution model are given by Luyben.33

Fuzzy Model Based Predictive Control System

For the FMPC control system, the convolution models of
the original configuration of DMC will be substituted by the
functional fuzzy models. The fuzzy models act as a predictor
in the strategy of predictive control, and the control action
for each output is given by the minimization of an objective
function similar to Eq. 7. In this case, however, the term
ypredCL;i in Eq. 7 is calculated through Takagi-Sugeno fuzzy
models. In general, the fuzzy model makes the predictions
of the output variable as a function of the last and current
signals of input and of the last signals of output. The FMPC
control scheme is shown schematically in Figure 2.34

The control system tuning is carried through the integral of
the absolute value of the error (IAE), defined by Eq. 10, look-
ing up the best combination of parameters (PH, CH, f, a) that
minimizes this performance criterion. Therefore, the following
optimization problem is solved during tuning procedures:

min
PH;CH;f ;a

JðPH;CH; f ; aÞ ¼ IAE ¼
Ztf
t0

jysetðtÞ � yactualðtÞj � dt
2
4

3
5

(10)

In Eq. 10, t0 and tf are the initial and final times of the
evaluation period.

Case Study: Copolymerization of Methyl
Methacrylate with Vinyl Acetate

The process considered in this study as case study is the
solution copolymerization of methyl methacrylate with vinyl
acetate in a continuous stirred tank reactor.35 Figure 3 is a
flow diagram of a copolymerization reactor with a recycle
loop. Monomer A is methyl methacrylate, monomer B is
vinyl acetate, the solvent is benzene, the initiator is azobisi-
sobutyronitrile (AIBN), and the chain transfer agent is acet-
aldehyde. The monomer stream may also contain inhibitors
such as m-dinitrobenzene (m-DNB).

Monomers A and B are continuously added with initiator,
solvent, and chain transfer agent. In addition, an inhibitor
may enter with the fresh feeds as an impurity. These feed
streams are combined (stream 1) with the recycle stream
(stream 2) and flow to the reactor (stream 3), which is
assumed to be a jacketed, well-mixed tank. A coolant flows
through the jacket to remove the polymerization heat. Poly-
mer, solvent, unreacted monomers, initiator, and chain trans-
fer agent flow out of the reactor to the separator (stream 4).

Figure 2. Structure of the predictive control using fuzzy
model.
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Here, the polymer is removed from the stream (stream 5).
Residual initiator and chain transfer agent are also removed
in this step. In the real process, the separator often involves
a series of steps, which may include dryers and distillation
columns. Here, unreacted monomers and solvent (stream 6)

continue on to a purge point (stream 7), which represents
venting and other losses. Purging is required to prevent the
accumulation of inerts in the system. After the purge, the
monomers and solvent (stream 8) are stored in the recycle
hold tank, which acts as a surge capacity to smooth out var-
iations in the recycle flow and composition. The effluent
(stream 2) recycled is then added to the fresh feeds.

Table 2. Steady-State Operating Conditions

Inputs
Monomer A (MMA) feed rate Gaf ¼ 18 kg/h
Monomer B (VAc) feed rate Gbf ¼ 90 kg/h
Initiator (AIBN) feed rate Gif ¼ 0.18 kg/h
Solvent (benzene) feed rate Gsf ¼ 36 kg/h
Chain transfer (acetaldehyde) feed rate Gtf ¼ 2.7 kg/h
Inhibitor (m-DNB) feed rate Gzf ¼ 0
Reactor jacket temperature Tj ¼ 336.15 K
Reactor feed temperature Trf ¼ 353.15 K
Purge ratio n¼ 0.05

Reactor parameters
Reactor volume Vr ¼ 1 m3

Reactor heat transfer area Sr ¼ 4.6 m3

Outputs
Polymer production rate Gpi ¼ 23.4 kg/h
Mole fraction of A in polymer Yap ¼ 0.5591
Weight average molecular weight Mpw ¼ 34994.7 kg/kmol
Reactor temperature Tr ¼ 353.02 K

Figure 3. Basic process configuration.35

Figure 4. Open-loop output variables response to inhibitor disturbance.
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The important reactor output variables for product quality
control are the polymer production rate (Gpi), mole fraction
of monomer A in the copolymer (Yap), weight average mo-
lecular weight (Mpw), and reactor temperature (Tr). The
inputs are the reactor flows of monomer A (Gaf), monomer
B (Gbf), initiator (Gif), chain transfer agent (Gtf), solvent
(Gsf), inhibitor (Gzf), the temperature of the reactor jacket
(Tj), and the temperature of the reactor feed (Trf). The reac-
tor, separator, and hold tank contain at startup pure solvent
preheated to 353.15 K.

The steady-state operating point is summarized in Table 2.
Under these conditions, the reactor residence time is hr ¼ 6
h and the overall reactor monomer conversion is 20%. These
operating conditions ensure that the viscosity of the reaction
medium remains moderate. Table 2 also indicates that the
temperature of the reactor feed Trf is practically equal to the
reactor temperature Tr, because it was chosen to simulate re-

actor operation with a preheated feed where the single
source of heat removal is through the jacket.

Feedforward control of recycle

The presence of the recycle stream introduces disturbances
in the reactor feed which affect the polymer properties. To
overcome this, Congalidis et al.35 implemented a feedfor-
ward controller in the process to compensate for these distur-
bances by manipulating the fresh feeds to maintain constant
feed composition and flow to the reactor. Feedforward con-
trol of the recycle stream enabled the designer to separate
the control of the reactor from the rest of the process. Thus,
the reactor can be analyzed separately. Details of the feed-
forward control of recycling are given in Congalidis et al.,35

Maner and Doyle,36 and Lima et al.24

Deterministic model

This case study has previously been described in the liter-
ature by a nonlinear phenomenological mathematical model
and kinetic parameters. This model, which is composed by a
set of algebraic and ordinary differential equations, is con-
sidered as the real plant for data generation, identification of
the fuzzy model, and implementation of the controllers.
Details of the phenomenological model as well as the kinetic

Table 3. Selected Control Loops

Manipulated Output

Gbf Gpi

(Gaf/Gbf) Yap
Gif Mpw

Tj Tr

Figure 5. Identification data of the fuzzy models.
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mechanism and initial concentrations are given in Congalidis
et al.35 and Maner and Doyle.36

Open-loop behavior and selection of the control loops

This system consists of six inputs (Gaf, Gbf, Gif, Gtf, Gsf,
and Tj) and four outputs. The temperature of the reactor feed
(Trf) is considered constant and purge ratio (n) is manipu-
lated by the feedforward controller. Table 2 also indicates
that the inhibitor feed rate is equal to zero. Given this, the
deterministic model was solved by a Runge-Kutta type algo-
rithm written in Fortran 90. Figure 4 presents the behavior
of the four output variables in open-loop for an inhibitor dis-
turbance of 4 parts per 1000 (mole basis) in the fresh feed.
As observed, even with this low inhibitor molar concentra-
tion, the polymer properties are noticeably affected. This dis-
turbance is the same as that considered by Congalidis et
al.35 and Maner and Doyle.36 The fresh feed corresponds to
the addition of the molar outflows of monomers, initiator,
solvent, and chain transfer agent in the system entrance.

Lima et al.24 developed a factorial planning using Statis-
tica Version 7.0 Software to discriminate the variables which
have a greaterer impact on the process performance. The
selected control structure resulting from this analysis is
shown in Table 3.

Dynamic fuzzy modeling

An algorithm for functional multivariable dynamic fuzzy
modeling was developed using the subtractive clustering and
least squared methods. This was further inserted in the simu-

lation program in open-loop. A sampling rate equal to 0.25 h
and a simulation interval of 400 h were used. Three entran-
ces for the four models were considered: manipulated vari-
able on time instants k and k�1 (nu ¼ 2); controlled vari-
able on time instants k�1 (ny ¼ 1). The generated models
were later used for the regulatory and servo controls.

Figure 5 presents the training (model generation) and
test (validation) data for the four output variables and
Tables 4–7 present the parameters for the fuzzy models. A
set of 1600 points was obtained both for training and testing.
In Tables 4–7, k refers to time instant; u refers to manipu-
lated variable; w and yi refers to output, where i ¼ 1,…,R; R
being the number of rules of the fuzzy model; and ain and
bih the consequence function parameters of the fuzzy model
for the input and output, respectively, where n ¼ 1,…,nu
and h ¼ 1,…, ny.

An ith specific rule is shown in Eq. 11, where Xin and Wih

are fuzzy sets (membership functions) of input and output,
respectively.

IFðuðkÞ is Xi;1Þ and ðuðk � 1Þ is Xi;2Þ and ðwðk � 1Þ is Wi;1Þ
THEN yiðk þ 1Þ ¼ ai1 � uðkÞ þ ai2 � uðk � 1Þ þ bi1 � wðk � 1Þ

(11)

Table 4. Parameters of the Fuzzy Model for Gpi

Number of Rules ¼ 1

Antecedent part
Rule i u(k), u(k�1) w(k)

ci � 102 ri � 102 ci � 102 ri � 102

i ¼ 1 10.84 41.06 50.48 23.59

Consequent part
Rule i ai1 � 102 ai2 � 102 bi1 � 102

i ¼ 1 1.80 �1.04 99.31

Table 5. Parameters of the Fuzzy Model for Yap

Number of Rules ¼ 4

Antecedent part
Rule i u(k), u(k�1) w(k)

ci � 102 ri � 102 ci � 102 ri � 102

i ¼ 1 10.84 17.11 18.48 17.82
i ¼ 2 91.50 17.11 103.59 17.82
i ¼ 3 39.86 17.11 68.74 17.82
i ¼ 4 100.00 17.11 64.23 17.82

Consequent part
Rule i ai1 � 102 ai2 � 102 bi1 � 102

i ¼ 1 �1.11 4.08 97.41
i ¼ 2 0.00 1.24 98.76
i ¼ 3 �0.24 2.18 98.30
i ¼ 4 �1.84 0.56 103.53

Table 6. Parameters of the Fuzzy Model for Mpw

Number of Rules ¼ 5

Antecedent part
Rule i u(k), u(k�1) w(k)

ci � 102 ri � 102 ci � 102 ri � 102

i ¼ 1 39.86 52.77 44.67 48.09
i ¼ 2 12.34 52.77 72.18 48.09
i ¼ 3 73.71 52.77 28.13 48.09
i ¼ 4 39.86 52.77 6.38 48.09
i ¼ 5 91.04 52.77 60.66 48.09

Consequent part
Rule i ai1 � 102 ai2 � 102 bi1 � 102

i ¼ 1 28.00 �65.26 74.60
i ¼ 2 �16.97 21.95 101.30
i ¼ 3 12.95 �14.22 98.36
i ¼ 4 �23.52 52.16 134.86
i ¼ 5 �24.78 22.53 125.00

Table 7. Parameters of the Fuzzy Model for Tr

Number of Rules ¼ 3

Antecedent part
Rule i u(k), u(k�1) w(k)

ci � 102 ri � 102 ci � 102 ri � 102

i ¼ 1 10.84 17.11 17.27 15.65
i ¼ 2 91.50 17.11 91.04 15.65
i ¼ 3 39.86 17.11 45.59 15.65

Consequent part
Rule i ai1 � 102 ai2 � 102 bi1 � 102

i ¼ 1 �6.72 17.19 93.59
i ¼ 2 9.42 8.45 81.47
i ¼ 3 11.53 7.78 82.65
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Figure 6. Validation of the fuzzy models.

Figure 7. Response of output variables to inhibitor disturbance, with temperature control only.
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Figure 6 presents the validation results of the fuzzy mod-
els, which shows a very good prediction for the output vari-
able. The average quadratic errors (calculated by Eq. 6) are
equal to 0.0576 kg/h, 0.0004, 24.8106 kg/kmol, and 0.1284
K for the Gpi, Yap, Mpw, and Tr, respectively. As observed,
very small errors were obtained.

Performance of the fuzzy model based predictive control
system and discussion

An algorithm for the proposed control structure was devel-
oped in Fortran 90 and further inserted in the simulation pro-
gram. To verify the performance of the FMPC strategy, a
comparison with the DMC algorithm was made.

In the regulatory problem, an inhibitor disturbance of four
parts per 1000 (mole basis) in the fresh feed was considered.
Figure 7 indicates the futility of just controlling the reactor

temperature in response to this disturbance. The temperature
is very well controlled by the two control schemes, but the
polymer properties and production rate are still considerably
influenced by the disturbance. For example, the molecular
weight actually deviates more from its setpoint (34994.7 kg/
kmol) with the temperature loop closed (31132.6 kg/kmol)
than with the temperature loop open (32051.5 kg/kmol).

Table 8 shows the parameters used for DMC and FMPC
multivariable control structures, and also presents the control
errors for these configurations. Figure 8 presents a graphic
analysis of the closed-loop performance of the four output
variables, comparing the controllers with the open-loop sys-
tem behavior. Computation times of 23 and 24 s were
obtained for DMC and FMPC control, respectively.

As can be observed in Table 8 and Figure 8, the proposed
control system performs better than the DMC, with a lower
IAE value, a quicker answer and a smaller overshoot for the
Gpi, Yap, and Tr. For the Mpw, the value of the IAE for the
FMPC control system is larger than that for the DMC. How-
ever, the FMPC promotes a smoother and continuous behav-
ior of the Mpw, while the DMC causes oscillations, which
are not desired.

As regards the servo problem, the parameters used for the
DMC and FMPC control structures are given in Table 9, as
well as the control errors. Figure 9 presents the behavior of
the four output variables for the reactor under control with
setpoint changes. Computation times of 4 and 5 s were
obtained for DMC and FMPC control, respectively. Such
variable setpoint change policies seek to comply with the

Table 8. Tuning Parameters and Control Errors for the
Regulatory Problem

Output

Parameters IAE

PH CH f a DMC FMPC

Gpi 2 1 0.003 0.80 54.9 kg/h 26.4 kg/h
Yap 5 2 0.023 0.95 0.6450 0.0425
Mpw 15 3 1.500 0.01 104735.7

kg/kmol
278715.2
kg/kmol

Tr 2 1 0.169 0.01 2.05 K 0.76 K

Figure 8. Closed-loop and open-loop simulations for inhibitor disturbance.
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maximum and minimum limits allowed for variations on the
output variables due to the dynamic nature of the process,
taking into account the operational issues of product quality
and safety.

Table 9 shows that the values of the control errors for the
projected control system are greater for the Gpi and Yap, and
lower for the Mpw and Tr. On the other hand, on analyzing
Figure 9, it can be observed that the DMC promotes oscilla-
tions in the Yap and the FMPC control provides a slightly
noisy behavior in the Mpw. However, in general, it can be
concluded that the two controllers present similar responses
for the four output variables. This can be explained by the
fact that Tr depends linearly on Tj.

For the regulatory and servo controls, the selection of
different values for the parameters for each output vari-
able should be noted. This occurs because of the existence
of dissimilar sensitivities between each controlled variable

and each manipulated variable, requiring the use of differ-
ent tuning parameters. Also, it is important to emphasize
that the regulatory and servo problems represent two dif-
ferent control directions and, thus, they require different
control settings.

Conclusions

A fuzzy model based multivariable predictive control sys-
tem was developed and applied to a copolymerization reac-
tion because of its complexity. The polymer rate, composi-
tion, molecular weight, and reactor temperature were ana-
lyzed for regulatory and servo problems. The proposed
control structure was compared with the DMC configuration,
and presented the following main advantages.

1. Using a nonlinear model to represent a nonlinear pro-
cess can often yield better results compared to a classic lin-
ear model.

2. Only input and output process data is required to rep-
resent the nonlinear model.

3. Equivalent computational effort achieves better results
than those of linear predictive control. This indicates that the
FMPC control system can certainly provide lower computa-
tional effort when compared to a conventional nonlinear pre-
dictive control.

As for disadvantages, it is important to mention that a suf-
ficiently representative data set of the process is required to
obtain a good model and consequently suitable control.

Table 9. Tuning Parameters and Control Errors for the
Servo Problem

Output

Parameters IAE

PH CH f a DMC FMPC

Gpi 2 1 0.330 0.55 53.5 kg/h 159.7 kg/h
Yap 5 2 0.300 0.95 6.8010 10.6427
Mpw 9 1 0.040 0.98 331569.2

kg/kmol
240357.0
kg/kmol

Tr 2 1 0.500 0.01 329.36 K 300.03 K

Figure 9. Closed-loop simulation for changes in setpoint.
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In fact, the use of internal fuzzy dynamic models in the
structure of predictive control has outstanding potential in
the development of advanced control strategies and real-time
optimization. This is because it is possible to take into
account the operator information in the design of model. It
has also been shown here that it is possible to find a set of
parameters which leads to good control action without dras-
tic changes in the controlled variables. It can, therefore, be
concluded that the designed control strategy presented a suf-
ficiently satisfactory performance, providing a better
response than the DMC in most of the situations examined.
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Notation

a, b ¼ parameter of the consequent function of the fuzzy model
A ¼ monomer A
B ¼ monomer B
c ¼ center of the Gaussian membership function

CH ¼ control horizon
CP ¼ continuous polymerization

CSTR ¼ continuous stirred tank reactor
DMC ¼ dynamic matrix controller

f ¼ suppression factor
FMPC ¼ fuzzy model based predictive control system

G ¼ mass flow rate, kg/h
IAE ¼ integral of the absolute value of the error

k ¼ time instant, h
m ¼ number of discrete instants
M ¼ molecular weight, kg/kmol

MPC ¼ model predictive control
PH ¼ prediction horizon
R ¼ number of rules of the fuzzy model
T ¼ temperature, K
u ¼ input variable of the process, input variable of the fuzzy

model—manipulated variable
w ¼ input variable of the fuzzy model—controlled variable
W ¼ fuzzy sets of the output variable of the process
x ¼ input variable of the process
X ¼ fuzzy sets of the input variable of the process
y ¼ output variable of the process
Y ¼ mole fraction
y ¼ predicted response

Greek letters

a ¼ reference trajectory parameter
l ¼ Gaussian membership function
r ¼ constant spread of the Gaussian membership function
n ¼ molar purge fraction

Subscripts

a ¼ monomer A
b ¼ monomer B

CL ¼ closed-loop
f ¼ feed to the reactor, final time of the evaluation period
i ¼ initiator, instantaneous, rule of the fuzzy model
j ¼ cooling jacket, entrance of the fuzzy model
k ¼ time instant
p ¼ polymer
r ¼ reactor
s ¼ solvent
t ¼ chain transfer agent
w ¼ weight average polymer property
z ¼ inhibitor
0 ¼ initial time of the evaluation period

Superscripts

actual ¼ actual value
d ¼ desired output value

future ¼ future value
pred ¼ predicted value
set ¼ set-point

Literature Cited

1. Alexandridis AP, Siettos CI, Sarimveis HK, Boudouvis AG, Bafas
GV. Modelling of nonlinear process dynamics using Kohonen’s neu-
ral networks, fuzzy systems and Chebyshev series. Comput Chem
Eng. 2002;26:479–486.

2. Habbi H, Zelmat M, Bouamama BO. A dynamic fuzzy model for a
drum-boiler-turbine system. Automatica. 2003;39:1213–1219.

3. Cerrada M, Aguilar J, Colina E, Titli A. Dynamical membership
functions: an approach for adaptive fuzzy modeling. Fuzzy Sets Sys.
2005;152:513–533.

4. Sala A, Guerra TM, Babuska R. Perspectives of fuzzy systems and
control. Fuzzy Sets Sys. 2005;156:432–444.

5. Campello RJGB, Von Zuben FJ, Amaral WC, Meleiro LAC, Maciel
Filho R. Hierarchical fuzzy models within the framework of ortho-
normal basis functions and their application to bioprocess control.
Chem Eng Sci. 2003;58:4259–4270.

6. Schnelle PD, Rollins DL. Industrial model predictive control tech-
nology as applied to continuous polymerization processes. ISA
Trans. 1998;36:281–292.

7. Santos LO, Afonso PAFNA, Castro JAAM, Oliveira NMC, Biegler
LT. On-line implementation of nonlinear MPC: an experimental
case study. Control Eng Pract. 2001;9:847–857.

8. Park M, Rhee H. Property evaluation and control in a semibatch
MMA/MA solution copolymerization reactor. Chem Eng Sci. 2003;
58:603–611.

9. Ramaswamy S, Cutright TJ, Qammar HK. Control of a continuous
bioreactor using model predictive control. Process Biochem. 2005;
40:2763–2770.

10. Dougherty D, Cooper D. A practical multiple model adaptive strat-
egy for multivariable model predictive control. Control Eng Pract.
2003;11:649–664.

11. Guiamba IRF, Mulholland M. Adaptive linear dynamic matrix con-
trol applied to an integrating process. Comput Chem Eng. 2004;28:
2621–2633.

12. Haeri M, Beik HZ. Application of extended DMC for nonlinear
MIMO systems. Comput Chem Eng. 2005;29:1867–1874.

13. Roubos JA, Mollov S, Babuska R, Verbruggen HB. Fuzzy model-
based predictive control using Takagi-Sugeno models. Int J Approxi-
mate Reasoning. 1999;22:3–30.

14. Abonyi J, Babuska R, Ayala Botto M, Szeifert F, Nagy L. Identifi-
cation and control of nonlinear systems using fuzzy Hammerstein
models. Ind Eng Chem Res. 2000;39:4302–4314.

15. Sousa JMC, Kaymak U. Model predictive control using fuzzy deci-
sion functions. IEEE Trans Sys Man Cybern. 2001;31:54–65.

16. Mollov S, Boom T, Cuesta F, Ollero A, Babuska R. Robust stability
constraints for fuzzy model predictive control. IEEE Trans Fuzzy
Sys. 2002;10:50–64.

17. Sarimveis H, Bafas G. Fuzzy model predictive control of non-linear
processes using genetic algorithms. Fuzzy Sets Sys. 2003;139:59–80.
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